Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration
نویسندگان
چکیده
One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases.
منابع مشابه
Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملProcessing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion.
Microglial cells and astrocytes are closely associated with nearly all compact deposits of the amyloid beta-protein found in the senile plaques characteristic of Alzheimer's disease and trisomy 21. The biosynthesis and metabolic fate of the beta-amyloid precursor protein (beta APP) in astrocytes has not been characterized, and its identification in microglia has not been described. Here, we rep...
متن کاملNeprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease.
Amyloid beta-peptide (Abeta) accumulation leads to neurodegeneration and Alzheimer disease; however, amyloid metabolism is a dynamic process and enzymic mechanisms exist for Abeta removal. Considerable controversy surrounds whether the intracellular domain of the amyloid precursor protein (AICD) regulates expression of the Abeta-degrading metalloprotease, neprilysin (NEP). By comparing two neur...
متن کاملP135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کامل